Structure Cristalline de Ni(CH₃COS)₂.2C₅H₅N

PAR M.M. BOREL, A. GEFFROUAIS ET M. LEDÉSERT

Laboratoire de Chimie Minérale B et Laboratoire de Cristallographie–Minéralogie, Groupe de Cristallographie et Chimie du Solide (E.R.A. 305), U.E.R. des Sciences, Université de Caen, 14032 Caen Cédex, France

(Reçu le 28 janvier 1976, accepté le 26 février 1976)

The crystals of Ni(CH₃COS)₂. 2C₅H₅N are monoclinic, space group $P_{2_1/c}$ with four molecules in a unit cell of dimensions a = 8.331, b = 8.640, c = 23.58 Å, $\beta = 111.13^{\circ}$. The structure was solved by the heavy-atom method from 3229 intensities collected with an automatic diffractometer. The final R is 0.064. The coordination of the nickel ion is six. The two nitrogen atoms are *cis*.

Ce travail entre dans le cadre d'une étude thermochimique et structurale des thioacétates métalliques (Bernard, Borel & Ledésert, 1973; Borel & Ledésert, 1975).

La similitude des propriétés des composés du type Ni(RCOS)₂.0,5C₂H₅OH avec R=CH₃ ou C₆H₅ a conduit Melson, Crawford & Geddes (1970) à proposer pour Ni(CH₃COS)₂.0,5C₂H₅OH une structure semblable à celle de Ni(C₆H₅COS)₂.0,5C₂H₅OH (Melson, Greene & Bryan, 1970). Les quatre groupements thiocarboxyliques se comporteraient comme des ligands pontant entre deux ions nickel pour former un dimère comme dans plusieurs carboxylates de métaux de transition (Bennett, Caulton & Cotton, 1969).

En outre, selon Melson, Crawford & Geddes (1970), les propriétés magnétiques et les spectres IR des composés du type Ni(RCOS)₂.2L (avec L = pyridine, β ou γ picoline, et R = CH₃ ou C₆H₅) permettent d'exclure l'existence de dimère. L'hypothèse la plus vraisemblable serait que l'amine provoque la rupture du dimère et que le nickel prenne un environnement octaédrique, les thioacétates jouant le rôle de ligand bidentate.

Afin de vérifier cette hypothèse, nous avons entrepris l'étude structurale de $Ni(CH_3COS)_2.2L$ en commençant par $Ni(CH_3COS)_2.2C_5H_5N$.

Partie expérimentale

 $Ni(CH_3COS)_2.2C_5H_5N$ est obtenu par action de la pyridine en solution alcoolique sur

Ni(CH₃COS)₂.0,5C₂H₅OH. On obtient par agitation une solution vert émeraude qui, après filtration et évaporation partielle, laisse précipiter des cristaux verts. Les cristaux, instables à l'air, ont été enfermés dans des tubes en verre de Lindemann. Les paramètres de la maille et le groupe spatial $P2_1/c$ ont été obtenus à l'aide d'une chambre de Weissenberg et d'une

Tableau 1. Données cristallographiques

chambre de précession. Les paramètres cristallins ont été précisés à l'aide d'un diffractomètre automatique. Les données cristallographiques sont rassemblées dans le Tableau 1.

Les cristaux présentent le prisme $\{011\}$ souvent prédominant, les pinacoïdes $\{102\}$, $\{10\overline{2}\}$ et $\{100\}$ avec des développements semblables et le pinacoïde $\{001\}$ peu développé.

Les intensités diffractées ont été collectées à l'aide d'un diffractomètre quatre cercles CAD-4 Enraf-Nonius avec le rayonnement $K\alpha$ du molybdène ($\lambda =$ 0,71069 Å) fourni par un monochromateur à lame de graphite. Les mesures ont été faites jusqu'à l'angle de Bragg $\theta = 35^{\circ}$. La mesure de trois réflexions de contrôle toutes les heures a permis de corriger sur les mesures les effets de la décomposition du cristal sous les rayons X. Les réflexions ont été corrigées des phénomènes de Lorentz et de polarisation; nous n'avons pas fait de correction d'absorption ($\mu r = 0,3$); sur 3856 réflexions, seules 3229 satisfaisant au test $I > 3\sigma(I)$ ont été utilisées pour résoudre et affiner la structure.

Détermination de la structure

La structure a été déterminée par la méthode classique de l'atome lourd. La position du nickel a été déduite des pics de Harker de la fonction de Patterson tridimensionnelle. Les atomes de soufre, d'oxygène, d'azote et de carbone ont été placés successivement à l'aide de séries de Fourier et de séries différence tridimensionnelles. Les coordonnées et les facteurs d'agitation thermique isotropes ont été affinés par la méthode des moindres carrés avec matrice complète; l'indice *R* est alors de 0,109. Trois itérations sur les coordonnées atomiques et les facteurs d'agitation thermique anisotrope ont conduit aux indices *R* suivants: $R = \sum ||F_o| - |F_c|| / \sum |F_o| = 0,064; \quad Rw = \{\sum w(|F_o| - |F_c|)^2 / \sum w|F_o|^2\}^{1/2} = 0,081.$

Les facteurs de diffusion atomique pour Ni^{2+} , S, O, N et C sont ceux de Cromer & Waber (1965). On a tenu compte de la dispersion anomale pour le nickel (Cromer, 1965).

Tableau 2. Coordonnées atomiques ($\times 10^4$) et facteurs d'agitation thermique anisotrope ($\times 10^4$)

	x	у	z	β_{11}	β22	β_{33}	β_{12}	β_{13}	β_{23}
Ni	2505,6 (10)	3932,8 (9)	3740,9 (4)	123,3 (12)	71,6 (9)	13,1 (1)	3,0 (10)	10,3 (3)	0,6 (3)
S(1)	508 (2)	3784 (2)	2868 (1)	134 (3)	127 (3)	17(1)	6 (2)	6 (1)	-3(1)
O(1)	337 (6)	2766 (5)	3878 (2)	161 (8)	96 (6)	21 (1)	-18 (6)	18 (3)	9 (2)
C(1)	- 356 (8)	2821 (8)	3376 (4)	118 (11)	82 (9)	26 (2)	-1 (8)	11 (4)	-3 (3)
C(2)	- 1999 (10)	2024 (11)	3213 (5)	142 (14)	162 (15)	51 (4)	-45 (12)	-1 (6)	1 (6)
S(2)	4114 (3)	2925 (2)	4612 (1)	237 (4)	114 (3)	14 (1)	39 (3)	3 (1)	3 (1)
O(2)	3571 (6)	1751 (5)	3608 (2)	167 (8)	98 (6)	17 (1)	9 (6)	11 (2)	1 (2)
C(3)	4292 (9)	1578 (8)	4100 (3)	171 (13)	89 (8)	17 (1)	10 (8)	16 (4)	6 (3)
C(4)	5347 (12)	140 (9)	4228 (4)	265 (20)	109 (11)	32 (2)	85 (12)	23 5)	13 (4)
N(1)	1690 (6)	6024 (6)	4029 (2)	126 (8)	91 (7)	17 (1)	-7(7)	14 (2)	-4 (2)
C(5)	1499 (9)	7257 (8)	3658 (3)	147 (12)	78 (8)	23 (2)	8 (8)	16 (4)	2 (3)
C(6)	1023 (10)	8690 (9)	3833 (4)	210 (15)	102 (11)	22 (2)	34 (10)	5 (4)	1 (3)
C(7)	739 (12)	8851 (10)	4403 (4)	241 (18)	132 (13)	32 (2)	30 (13)	27 (5)	-21 (5)
C(8)	903 (11)	7605 (11)	4762 (4)	256 (19)	152 (13)	22 (2)	37 (13)	25 (5)	-13 (4)
C(9)	1375 (9)	6203 (9)	4560 (3)	165 (13)	138 (11)	18 (1)	17 (10)	19 (3)	-5(3)
N(2)	4435 (6)	4993 (6)	3441 (2)	116 (8)	75 (6)	18 (1)	10 (6)	13 (2)	6 (2)
C(10)	4640 (9)	4864 (9)	2894 (3)	159 (13)	138 (11)	21 (2)	39 (10)	21 (4)	20 (4)
C(11)	5966 (12)	5525 (12)	2674 (4)	192 (16)	238 (19)	33 (2)	86 (15)	39 (5)	49 (5)
C(12)	7111 (11)	6354 (11)	3063 (5)	154 (14)	149 (14)	44 (3)	27 (11)	34 (6)	31 (6)
C(13)	6879 (10)	6483 (10)	3613 (6)	131 (13)	125 (13)	55 (4)	- 22 (10)	16 (6)	14 (6)
C(14)	5535 (9)	5781 (9)	3808 (4)	133 (12)	121 (12)	33 (2)	-7 (9)	5 (4)	-5 (4)

Les coordonnées atomiques et les facteurs d'agitation thermique anisotrope sont rassemblés dans le Tableau 2.*

Description et discussion de la structure

Une projection de la structure suivant la direction [010] est donnée sur la Fig. 1. Les distances interatomi-

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 31709: 19 pp., 1 microfiche). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Tableau 3. Distances interatomiques (Å) et angles (°)

Coordination du nickel								
2,140 (6)	NiO(2)	2,128 (6)						
2,454 (2)	NiS(2)	2,442 (2)						
2,080 (6)	Ni - N(2)	2,069 (6)						
thioacétates								
1.704 (9)	O(1) - C(1) - S(1)	120.1 (7)						
1.24 (1)	O(1) - C(1) - C(2)	119.8 (8)						
1.53 (1)	S(1) - C(1) - C(2)	120.1 (6)						
1,699 (9)	O(2) - C(3) - S(2)	120.0 (7)						
1.23 (1)	O(2) - C(3) - C(4)	118,2 (8)						
1,53 (1)	S(2) - C(3) - C(4)	121,7 (6)						
Molécules de pyridine								
1.37 (1)	C(9) - N(1) - C(5)	119,3 (6)						
1.38 (1)	N(1) - C(5) - C(6)	121,2 (8)						
1,41 (1)	C(5) - C(6) - C(7)	118,1 (9)						
1,36 (1)	C(6) - C(7) - C(8)	119,9 (9)						
1,38 (1)	C(7) - C(8) - C(9)	119,2 (9)						
1,33 (1)	C(8) - C(9) - N(1)	122,4 (8)						
1,33 (1)	C(14) - N(2) - C(10)	119,4 (6)						
1,41 (1)	N(2) - C(10) - C(11)	122,8 (8)						
1,42 (1)	C(10)-C(11)-C(12)	117,4 (9)						
1,34 (1)	C(11)-C(12)-C(13)	119,0 (9)						
1,41 (1)	C(12)-C(13)-C(14)	120,9 (9)						
1,35 (1)	C(13)-C(14)-N(2)	120,5 (8)						
	du nickel 2,140 (6) 2,454 (2) 2,080 (6) thioacétates 1,704 (9) 1,24 (1) 1,53 (1) 1,699 (9) 1,23 (1) 1,53 (1) 1,53 (1) 1,38 (1) 1,38 (1) 1,38 (1) 1,33 (1) 1,33 (1) 1,33 (1) 1,41 (1) 1,34 (1) 1,35 (1)	du nickel 2,140 (6) Ni—O(2) 2,454 (2) Ni—S(2) 2,080 (6) Ni—N(2) thioacétates 1,704 (9) O(1)—C(1)—S(1) 1,24 (1) O(1)—C(1)—C(2) 1,53 (1) S(1)—C(1)—C(2) 1,699 (9) O(2)—C(3)—S(2) 1,23 (1) O(2)—C(3)—C(4) 1,53 (1) S(2)—C(3)—C(4) opyridine 1,37 (1) 1,37 (1) C(9)—N(1)—C(5) 1,38 (1) N(1)—C(5)—C(6) 1,38 (1) C(7)—C(8) 1,38 (1) C(7)—C(8) 1,33 (1) C(8)—C(9)—N(1) 1,33 (1) C(14)–N(2)—C(10) 1,41 (1) N(2)—C(10)–C(11) 1,42 (1) C(10)–C(11)–C(12) 1,34 (1) C(11)–C(12)–C(13) 1,41 (1) C(12)–C(13)–C(14) 1,35 (1) C(13)–C(14)–N(2)						

ques et les angles calculés à partir des paramètres finaux figurent dans le Tableau 3. Les ions thioacétates sont pratiquement plans. Les équations des plans moyens sont données dans le Tableau 4. Les deux ions thioacétates ont une géométrie voisine. Comme dans le thioacétate de baryum trihydraté (Borel & Ledésert, 1976), ils jouent le rôle de ligand bidentate et ont une conformation semblable.

Les équations des plans moyens pour les deux molécules de pyridine figurent dans le Tableau 4. On peut considérer que, dans la limite des erreurs expérimentales, les molécules sont planes. Les distances et

Fig. 1. Projection de la structure suivant [010].

Fig. 2. Environnement du nickel.

les angles sont en accord avec ceux obtenus dans d'autres composés solvatés par la pyridine (Morosin, 1975; Drew, Hursthouse & Thornton, 1972).

Le nickel a un environnement octaédrique déformé (Fig. 2). Il est entouré par deux oxygènes, deux soufres et deux azotes (Tableau 3). Les deux atomes de soufre sont en position *trans* alors que les deux atomes d'azote sont en position *cis*. Les atomes O(1), O(2), N(2) et N(1) forment approximativement un carré.

Les distances Ni–O [2,134 (8)] et Ni–N [2,074 (7) Å] sont comparables à celles déterminées dans Ni(CH₃COO)₂.4H₂O (Downie, Harrison & Raper, 1971) [Ni–O: 2,067 (3) Å] et

Ni(CH₃COO)₂. 2H₂O. 2C₅H₅N (Drew *et al.*, 1972) [Ni–O: 2,050 (5) et Ni–N: 2,100 (6) Å] avec un environnement octaédrique pour le nickel.

L'examen des distances intermoléculaires inférieures

Tableau 4. Equations des plans moyens calculés par la méthode des moindres carrés dans un système orthonormé défini par X||a, Y||b, et Z||c*

Entre crochets, nom de l'atome, distance au plan et écart type en Å.

Ions thioacétates Plan (1) C(1), C(2), O(1), S(1) -0,4640X+0,8401Y+0,2808Z-4,4308=0[C(1) -0,0015, 0,0077; C(2) 0,0005, 0,0106; O(1) 0,0006, 0,0101; S(1) 0,0001, 0,0020]

Plan (2)

C(3), C(4), O(2), S(2) 0,7843X + 0,4964Y - 0,3721Z - 0,0694 = 0[C(3) -0,0033, 0,0080; C(4) 0,0010, 0,0100; O(2) 0,0012, 0,0100; S(2) 0,0010, 0,0100]

Molécules de pyridine

Plan (3) N(1), C(5), C(6), C(7), C(8), C(9) 0,9574X + 0,2470Y + 0,1495Z - 4,0023 = 0 [N(1) 0,0087, 0,0055; C(5) - 0,0063, 0,0074; C(6) - 0,0068, 0,0100; C(7) 0,0088, 0,0098; C(8) - 0,0041, 0,0095; C(9) - 0,0094, 0,0080]

Plan (4)

N(2), C(10), C(11), C(12), C(13), C(14) -0.5249X + 0.8398Y - 0.1390Z - 0.6460 = 0[N(2) 0.0013, 0.0055; C(10) 0.0010, 0.0086; C(11) -0.0003, 0.1000; C(12) -0.0038, 0.0100; C(13) 0.0064, 0.0100; C(14) -0.0058, 0.0086]

Tableau 5. Distances intermoléculaires <4 Å

$\begin{array}{l} S(1)-C'(5)\\ S(1)-C'(12)\\ S(2)-C'(4)\\ S(2)-C'(4)\\ O(1)-C'(6)\\ O(1)-C'(7)\\ O(1)-C'(8)\\ O(2)-C'(2)\\ O(2)-C'(2)\\ O(2)-C'(11)\\ O(2)-C'(11)\\ O(2)-C'(12)\\ C(1)-C'(6) \end{array}$	3,96 (1) 3,69 (1) 3,80 (1) 3,78 (1) 3,85 (1) 3,57 (2) 3,60 (2) 3,52 (2) 3,96 (2) 3,48 (2) 3,28 (2) 3,28 (2) 3,91 (2) 3,85 (2)	$\begin{array}{c} C(2) - C'(11) \\ C(2) - C''(11) \\ C(2) - C'(12) \\ C(3) - C'(6) \\ C(3) - C'(6) \\ C(4) - C'(4) \\ C(4) - C'(6) \\ C(4) - C'(13) \\ C(4) - C'(14) \\ C(5) - C'(12) \\ C(5) - C'(13) \\ C(6) - C'(13) \\ C(7) - C'(7) \\ \end{array}$	3,61 (2) 3,87 (2) 3,82 (2) 3,69 (2) 3,94 (2) 3,77 (2) 3,78 (2) 3,78 (2) 3,90 (2) 3,91 (2) 3,92 (2) 3,79 (2)
O(2)-C'(6)	3,48 (2)	C(5) - C'(12)	3,81 ⁽²⁾
O(2)-C'(11)	3,28 (2)	C(5) - C'(13)	3,91 (2)
O(2)-C'(12)	3,91 (2)	C(6) - C'(13)	3,92 (2)
C(1)-C'(6) C(1)-C'(12) C(2)-C'(4) C(2)-C'(6) C(2)-C'(6) C(2)-C'(6) C(2)-C'(6) C(2)-C'(6) C(2)-C'(6) C(2)-C'(6) C(2)-C'(6) C(2)-C'(6) C(2)-C'(12) C	3,85 (2)	C(7)—C'(7)	3,79 (2)
	3,73 (2)	C(7)—C'(8)	3,99 (2)
	3,85 (2)	C(9)—C'(9)	3,91 (2)
	3,97 (2)	C(10)–C'(11)	3,99 (2)
C(2) - C'(10) C(2) - C''(10)	3,72 (2) 3,67 (2)	C(10) - C'(12)	3,93 (2)

à 4 Å (Tableau 5) montre que la cohésion de la structure cristalline est assurée par des contacts de van der Waals.

En conclusion, l'hypothèse de la rupture du dimère dans Ni(CH₃COS)₂.2pyridine et de l'environnement octaédrique pour le nickel a été vérifiée. Contrairement à ce qui existe dans Ni(CH₃COO)₂.2H₂O.2pyridine, les deux atomes d'azote sont en position *cis*.

Références

- BENNETT, M. J., CAULTON, R. J. & COTTON, F. A. (1969). Inorg. Chem. pp. 1-6.
- BERNARD, M. A., BOREL, M. M. & LEDÉSERT, M. (1973). Bull. Soc. Chim. Fr. pp. 2194–2198.
- BOREL, M. M. & LEDÉSERT, M. (1975). J. Inorg. Nucl. Chem. 37, 2334–2335.
- BOREL, M. M. & LEDÉSERT, M. (1976). Acta Cryst. B32, 2388-2391.
- CROMER, D. T. (1965). Acta Cryst. 18, 17-23.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.
- DOWNIE, T. C., HARRISON, W. & RAPER, E. S. (1971). Acta Cryst. B27, 706–712.
- DREW, J., HURSTHOUSE, M. B. & THORNTON, P. (1972). J. Chem. Soc. Dalton, pp. 1658–1660.
- MELSON, G. A., CRAWFORD, N. P. & GEDDES, B. J. (1970). Inorg. Chem. 9, 1123-1126.
- MELSON, G. A., GREENE, P. T. & BRYAN, R. F. (1970). Inorg. Chem. 9, 1116–1122.
- MOROSIN, B. (1975). Acta Cryst. B31, 632-633.